Name: Date:

1. Which of the following statements about the system of equations below is **true**?

Eq. 1)
$$3y = 6x + 24$$

Eq. 2)
$$2y - 4x - 36 = 0$$

$$\frac{2}{2} = \frac{4x}{2} + \frac{36}{2}$$

$$y = 2x + 18$$

A) The system has one unique solution

B) The system has two unique solutions

C) The system has no solutions

D) The system has an infinite number of solutions

(5 pts)

Answer: _____

2. Point A is the intersection of lines \square_1 and \square_2 represented at right

The equation of line \square_1 : -5x + 2y + 156 = 0

The equation of line \square_2 : y = 6x - 183

What are the coordinates of point A?

1.
$$-5x+2y+156=0$$

 $+5x-156$
 $2y=5x-156$
 $2 = 5x-156$
 $2 = 2 = 2$
 $2 = 2.5x-78$
 $2.5x-78=6x-183$
 $-2.5x-78=6x-183$
 $-2.5x-2.5x-2.5x-183$
 $-1.83=3.5x-183$
 $-1.83=3.5x-183$

$$Y=2.5x-78$$

 $Y=2.5L^{30}-78$
 $Y=75-78$
 $Y=75-78$

$$A(\underbrace{30},\underbrace{5 \text{ pts}})$$

3. Find the **point of intersection** between line 1 and 2.

$$\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = 8-0 = \frac{8}{4} = 7$$

$$\frac{y_{2}-y_{1}}{y_{2}-x_{1}} = \frac{8-0}{0-(-4)} = \frac{8}{4} = 7$$

(10 pts)

Point of Intersection ($\frac{4}{100}$, $\frac{36}{100}$)

4. Carter gets a job at *Footlocker* selling **shoes** and **shirts**. He keeps a record of his sales in a table but spilled coffee on it and lost some of the data.

	Shoes X	Shirts 7	Total sales (\$)
Day 1	12	3	2040
Day 2	6	18	4320
Day 3	10		4000

How many shirts did Carter sell on day 3?

$$-4x + 680 = -0.3x + 240$$

$$+4x + 44x$$

$$-240 = 3.6x + 240$$

$$-240 = 3.6x$$

$$\int \frac{3}{4} = \frac{1}{4} = \frac{1}{4}$$

$$y = -4 \times +680$$
 $y = -4(120) +680$
 $y = -480 +680$
 $y = -200$
 $y = 200$

(10 pts)

Carter sold _____ shirts on day 3