Name: Solutions.
Date: \qquad

1) Lifeguard certification requires a lifeguard to swim underwater and stay below $\mathbf{3} \mathbf{~ m}$ of depth for at least 5.5 seconds.
Megan's underwater swim is described below.
a) Did Megan get her lifeguarding certification? Justify your answer.

$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-0}{6-8}=\frac{-5}{-2}=2.5$

$$
y=a x+b
$$

$$
y=a x^{2} \quad y=-1.25 x^{2}
$$

$$
-5=a(2)^{2}
$$

Diff $=6.8-1.549$

Answer: Megan does not get her certification. She spent \qquad 5.251 seconds under water.
2) Steven is trying out for the New England Patriots and must run the length of a football field. The speed of his run is described by the piece-wise function shown below.
For how many seconds did Steven maintain a speed greater than or equal to $5 \mathbf{m} / \mathbf{s}$?

$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{15.75-0}{10-17.875}=\frac{15.75}{-7.875}=-2$
$y=1.75 x^{2}$
$y=-2 x+35.75$
$\frac{5.5}{1.25}=\frac{1.28 x^{2}}{1.75}$
$\sqrt{3.1428}=\sqrt{x^{2 k}}$
$5.5=-2 x+35.75$
$-35.75-35.75$
$\frac{-30.25}{-2}=\frac{-2 x}{-2}$

Diff $=\underbrace{15.125-1.773}$ $=13.352$

Answer: \quad Steven stayed at or above $5.5 \mathrm{~m} / \mathrm{s}$ for

3) Milan ties a squirrel to a rocket and tries to send him into outer space.

The path the squirrel takes is described in the piece-wise function below.
a) What is the maximum height (in km) the squirrel reaches.
b) How much time will the squirrel have spent at or above 6 km of altitude?

$$
y=2(1.5)^{x}
$$

$$
y=2(1.5)^{4}
$$

y	$=2(1.5)^{4}$
y	$=10.125$
y	$=-2.5 x+b$
10.125	$=-2.5(10)+b$
10.125	$=-2 y+b$
+25	$+2 \not 5$
35.125	$=b$

$$
y=10.125
$$

$$
\begin{aligned}
& y=2(1.5)^{x} \\
& 6=2(1.5)^{x}
\end{aligned}
$$

Guess \& check:

$$
\begin{aligned}
& y=-2.5 x+35.125 \\
& 6=-2.5 x+35.125
\end{aligned}
$$

$$
-35.125 \quad-35.125
$$

$$
\frac{-29.125}{-2.5}=\frac{-2.5 x}{-2.5}
$$

Answer: The squirrel reaches a max height of _10.125_m It will have spent \qquad minutes at or above 6 km .

