Name: _	
Date:	

$$y = ac^x$$

y - dependent var.

x - independent var. (usually time in days, weeks, months, years)

- a initial value (the amount you start with)
- c rate of growth or decay (if 'c' is greater than 1.0 \rightarrow y gets bigger as time goes by) (if 'c' is smaller, between 0 and 0.99 \rightarrow y gets smaller as time goes by)
- **1.** The world population in the year 2000 was approximately 6.08 billion people. The annual rate of increase has been about 2.5% per year $\leq 100 + 0.025$ What should the world population be in the year 2020?

Answers:

- World population in the year 2020: 9.96 billion people
- 2. A new Mac Pro is purchased for a sum of \$2500.

 Unfortunately, computers depreciate at the rate of 14% every year.

 How much will the computer be worth in 5 years?

Answers:

• Value of the Mac Pro after 5 years: 176.07

3. A baseball card bought for \$ 50 increases by 4% in value each year. 100+ 4= 104 = 1.04 How much will it be worth in 50 years?

y = 50
$$(1.04)$$
 50

Answers:

- In 50 years, the card will be worth: 355.33 \$
- 100-25=97.5 **4.** The bear population in Quebec **depreciates** at a rate of 2.5 % per year. There were 1571 bears in Quebec in 2002. How many bears should there be in 2020?

Answers:

- The bear population in Quebec, in 2020, should be: 996 bears
- **5.** An investment of \$25 000 increases at a rate of 10.5 % per year. (D > +(0.5 =) 10.5 = 1.10.5 Find the value of the investment after 35 years.

Answers:

• Value of the investment in 35 years: 623 416 -83

- **6.** The population of foxes on the island of Montreal is decreasing at a rate of 3.5 % per year. This year (in January of 2016), there were **80 foxes** on the island.
 - a) In what year will the population first drop below 15 foxes.

Build the Rule:

- Variables: X= Years y= foxes
- Initial value (a) $\frac{60 \text{ foxes}}{100-3.5} = \frac{96.5}{100} = 0.965$ Rate of growth / decay (c) $\frac{100-3.5}{100} = \frac{96.5}{100} = 0.965$
- Rule: 45 80 C 0.965)

$$y = 80 (0.965)^{1}$$
 $y = 77.2$
 $y = 80 (6.965)^{5}$
 $y = 66.9$
 $y = 66.9$
 $y = 66.9$
 $y = 80 (0.965)^{10}$
 $y = 90 (0.965)^{10}$
 $y = 90 (0.965)^{10}$
 $y = 90 (0.965)^{10}$
 $y = 13.5$
 $y = 13.5$
 $y = 15$

opulation should drop below 15 foxes after $\frac{47}{47}$ years.

opulation should drop below 15 foxes after $\frac{47}{47}$ years.

Answers:

- The fox population should drop below 15 foxes in the year 2063 -7 + 47