1. Mikey runs from his home, H (-124, 192) to school, S (381, -8).

**How far** is Mike's run?

(round your answer to the nearest tenth)

**/5** 





Answer: Mike's run convers a distance of 543.2 meters

2. What is the midpoint, M, found exactly between points

D (-14, 62) and N (85, -12)?

$$\times n$$
,  $\gamma n$   $\left(\frac{x_{1}+x_{2}}{2}\right)$ ,  $\left(\frac{y_{1}+y_{2}}{2}\right)$   
 $\left(\frac{-19+85}{2}\right)$ ,  $\left(\frac{c_{1}+c_{1}}{2}\right)$   
 $\left(\frac{71}{2}\right)$ ,  $\left(\frac{50}{2}\right)$   
 $35.5$ ,  $25$ 



**3.** A straight line is marked at the ends and at the middle.

Given an endpoint at  $\bf A$  (-8.2, 14.6) and a midpoint at  $\bf M$  (3.1, -5.7),

where would you expect to find the other endpoint, B?



B( /4. 4, -26)

**4.** What are the coordinates of a point, D, that divides line BA into a ratio of 2:3, starting from (2, 6, 3, 2, 5, -3, 6)

B?



$$xp = 464 \frac{2}{5} (634) - 46)_{1} - 124 \frac{2}{3} (63-612)$$

$$46 + \frac{2}{5} (-130) - 124 \frac{2}{5} (75)$$

$$46 + (-52) - 12430$$

$$-6 / 8$$

**5.** A **UFO** is flying along on a path described by the rule: 4y + 4x - 60 = 0A weather balloon filled with explosive gas is floating along a path described by: 4y = 8x + 12

When the two objects collide, everything within a distance of 15 km is vaporized. At that moment, a flock of **geese** is flying at coordinates (7, -2).

Do the geese avoid the blast or fall out of the sky?

4y + 4x-60=0 -4x +60 -4x+60

y=-1x+15



/5



Explosion E ( 4 , // )

Distance between the E and the geese // 13.34

Do the geese survive or not? // 10.00